

Install and use GHDL and GtkWave

Table of Contents

Install and use GHDL and GtkWave
Table of Contents
GHDL
GtkWave
Get the necessary programs and tools

GHDL:
GtkWave

Install the tools
Install GNAT
Install LLVM
Install GHDL
Install GHDL vendor libraries

Xilinx
UVVM

GtkWave
The end

Tools Documentation
GHDL
GtkWave

GHDL

GHDL is an open-source simulator for the VHDL hardware language. GHDL is not an interpreter;
it allows you to analyze and elaborate sources to generate machine code from your design.
Native program execution is the only way for high speed simulation.

Features as given on the official GHDL Github page.

GHDL fully supports the 1987, 1993, 2002 versions of the IEEE 1076 VHDL standard, and the
latest 2008 revision
Partial support of PSL.
By using a code generator (LLVM, GCC or, x86_64/i386 only, a built-in one), it is much faster
than any interpreted simulator. It can handle very large designs, such as leon3/grlib.
GHDL runs on GNU/Linux, Windows and macOS, both on x86 and on x86_64 .
GHDL can write waveforms to a GHW, VCD or FST file. Combined with a GUI-based
waveform viewer and a good text editor, GHDL is a very powerful tool for writing, testing
and simulating code.
Supported third party projects: VUnit, OSVVM, cocotb (through the VPI interface), ...

GtkWave

GTKWave is a fully featured GTK+ based waveform viewer for Unix, Win32, and Mac OSX which
reads LXT, LXT2, VZT, FST, and GHW files as well as standard Verilog VCD/EVCD files and allows
their viewing.

af://n3064
af://n2333
af://n2335
https://github.com/ghdl/ghdl
https://en.wikipedia.org/wiki/Property_Specification_Language
http://llvm.org/
http://gcc.gnu.org/
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Intel_80386
http://www.gaisler.com/index.php/downloads/leongrlib
http://en.wikipedia.org/wiki/Linux_distribution
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/MacOS
http://ghdl.readthedocs.io/en/latest/using/Simulation.html?highlight=GHW#cmdoption-wave
https://en.wikipedia.org/wiki/Value_change_dump
http://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Waveform_viewer
https://vunit.github.io/
http://osvvm.org/
https://github.com/potentialventures/cocotb
https://en.wikipedia.org/wiki/Verilog_Procedural_Interface
af://n2351
http://www.gtk.org/
https://en.wikipedia.org/wiki/Waveform_viewer
af://n2353

Get the necessary programs and tools

This is a guide to install both tools on Linux-Mint_20.4 or Ubuntu_20.04 and possibly coming
releases of Linux-Mint and Ubuntu. Download GHDL and GtkWave and download tools and
programs necessary to install and run both tools.

GHDL:

This guide describes the GHDL - LLVM installation.

Download the GHDL source files from its GitHub location.
Click the [code] button and download the ZIP file.
This file is called ghdl-master.zip and should be saved in ~/Downloads/Ghdl.

Uncompress the zip file and let it store itself in the directory set in the zip file.

Other tools necessary to install GHDL-LLVM are:

GNAT - ADA compiler: The latest community version at the time of writing/rewriting
was/is gnat-2020-20200429-x86_64-linux-bin. Get it here.
LLVM - Low Level Virtual Machine.

GtkWave

Download GtkWave from here(1) or from here(2)
At time of writing/rewriting this article the latest version Linux Ubuntu it was "gtkwave-
3.3.105.tar.gz".
(1) Just click the big [Download] button and the latest version for the used operating system
is selected and downloaded.
(2) In the first line of text "... You can grab version 3.3.105 here. Documentation in pdf format
can be found here." click the blue here button to download the latest .tar.gz file and the
latest version of the GtkWave documentation.
Save the downloaded file under /Downloads/Ghdl as you did for other files related to GHDL.
Uncompress the .tar.gz file and let it occupy it's own directory under /Downloads/Ghdl

Install the tools

Install GNAT

Assumed is that the earlier downloaded files are stored in /Downloads/Ghdl

Make the downloaded file executable:

Run the file and install the ADA compiler under /opt/Gnat/
Be aware that installing software in /opt requires one to be sudo or root.
sudo ./gnat-2020-20200429-x86_64-linux-bin

Add following line to your .bashrc or better .bash_aliases file.

cd \Downloads\Ghdl

chmod 766 gnat-2020-20200429-x86_64-linux-bin

GNAT GPL (ADA compiler) for GHDL

export PATH=$PATH:/opt/Gnat/<year>/bin

af://n2353
af://n2355
https://github.com/ghdl/ghdl
https://www.adacore.com/community
af://n2367
https://sourceforge.net/projects/gtkwave/
http://gtkwave.sourceforge.net/
http://gtkwave.sourceforge.net/gtkwave-3.3.105.tar.gz
http://gtkwave.sourceforge.net/gtkwave.pdf
af://n2379
af://n2380

The tool is installed and usable in command line mode. It is possible to install a GNAT
studio.
To do this, go to were the GNAT tool is installed, in this case /opt/Gnat/2020 and run the
doinstall script.

Follow the instructions of the installer.

GNAT Studio will automatically add itself to the PATH.
Note: that GNAT Studio path will be add at the end of the PATH, meaning that it will find
first any other GNAT installations that you have in your PATH.
Hint: Remove the automatically add entry for GNAT-studio from the path and add it
manually to the path, but do it at the same place where the other GNAT options have been
add to the .bashrc or better .bash_aliases file.

Install LLVM

Browse to this page: https://apt.llvm.org/

On the page go to the Ubuntu section and copy the two text lines for the latest stable
released version and for the latest version of Ubuntu Focal (20.04)

This are the lines:

Adding above two lines to the repositories of your system will search for what's called (old
stable branch), during time of writing this was version 9 of LLVM. If you want to install from
repositories a newer version, like the (stable branch), or version 10 during time of writing, the
you need to add the version number to the repository lines. Like this:

Press the windows key and start typing Software & Updates. As soon as some letters are
typed, icons will appear. Click the [Software & Update] icon and select the [Other Software]
tab. Click [Add] and enter the first “deb ...” line in the new popup. Click [Add Source] and
provide the sudo(root) password.
Add the second ”deb ...“ line the same way.

Hit [Close] and allow a new scan of the repositories.

Install the stable version of all key packages

Lower on the page with repository archive information find how to install all key
packages or just read on here.

Open a terminal (Right click the desktop and select [Open Terminal]).

Type or better copy, one by one, following lines in the terminal:

wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|sudo apt-key add -

provide the sudo password to install the archive signature.

cd /opt/Gnat/2020

sudo ./doinstall

deb http://apt.llvm.org/focal/ llvm-toolchain-focal main

deb-src http://apt.llvm.org/focal/ llvm-toolchain-focal main

deb http://apt.llvm.org/focal/ llvm-toolchain-focal-10 main

deb-src http://apt.llvm.org/focal/ llvm-toolchain-focal-10 main

af://n2398
https://apt.llvm.org/

Remark:
From here on the LLVM tools will be installed.
I've set the repository lines for the (old stable release) in my system. Reason release shift
trough and now I'm sure I always get an update installed that is just one behind the
newest stable released version.

To install the tools that go together with the added repository lines, mention the
correct version in the install commands. In this case it's version 9.

Install LLVM

apt-get install libllvm-9-ocaml-dev libllvm9 llvm-9 llvm-9-dev llvm-9-doc

llvm-9-examples llvm-9-runtime

Install Clang & co

apt-get install clang-9 clang-tools-9 clang-9-doc libclang-common-9-dev

libclang-9-dev libclang1-9 clang-format-9 python-clang-9

Libfuzzer

apt-get install libfuzzer-9-dev

lldb

apt-get install lldb-9

lld (linker)

apt-get install lld-9

libc++

apt-get install libc++-9-dev libc++abi-9-dev

OpenMP

apt-get install libomp-9-dev

To make use of this latest version of LLVM tools some settings need to be done. In the
terminal continue typing or copying and executing following lines one after the other.

 The above lines set a permanent link for the system to use the newly installed LLVM tools
instead of possible pre-installed or earlier installed versions.

Install GHDL

sudo update-alternatives --install /usr/bin/clang clang /usr/bin/clang-9

100

sudo update-alternatives --install /usr/bin/clang++ clang++

/usr/bin/clang++-9 100

sudo update-alternatives --install /usr/bin/clang-apply-replacements

clang-apply-replacements /usr/bin/clang-apply-replacements-9 100

sudo update-alternatives --install /usr/bin/clang-check clang-check

/usr/bin/clang-check-9 100

sudo update-alternatives --install /usr/bin/clang-query clang-query

/usr/bin/clang-query-9 100

sudo update-alternatives --install /usr/bin/clang-tidy clang-tidy

/usr/bin/clang-tidy-9 100

sudo update-alternatives --install /usr/bin/scan-build scan-build

/usr/bin/scan-build-9 100

sudo update-alternatives --install /usr/bin/scan-view scan-view

/usr/bin/scan-view-9 100

af://n2455

In the assumption that GNU-ADA and LLVM are installed and the downloaded ghdl-master.zip file
is uncompressed in /Downloads/Ghdl/ghdl-master , do following to install GHDL.

Open a terminal window and change directory (cd) to the /opt folder.
Create here a new directory called /Ghdl sudo mkdir Ghdl .

Change the owner and group of the directory;
sudo chown <user> Ghdl

sudo chgrp <user> Ghdl

 = your user name.
This is done to make later modifications and additions easier.

Change directory to the folder used by the uncompressed GHDL files, cd
/home/Downloads/Ghdl .

Run the terminal command:

When the previous run is done, type make and let run again.

Run make install when previous run has finished.

The tool should now be installed in /opt/Ghdl, showing three folders (bin, include, lib).

Add the path /opt/Ghdl/bin to the systems path by editing the .bashrc or .bash_aliases file.

Change directory to /opt/Ghdl/bin and create a symbolic link for ghdl.

Install GHDL vendor libraries

The GHDL simulator tool is installed on the system but only usable for generic VHDL simulations.
The guess is that GHDL has been installed for simulations using a specific FPGA vendor. GHDL
does not contain contains libraries for FPGA or other device vendors but contains scripts allowing
to easily compile and install vendor supplied libraries. There are ready made scripts available for
Altera/Intel, Lattice, Xilinx, OSVVM and UVVM. These scripts can be found in
/opt/Ghdl/lib/ghdl/vendors.

Xilinx

Lets use the script to compile and install libraries for Xilinx components using the Vivado tools.

Remark: Be sure to have the Xilinx Vivado tools installed on your system! If not, install these
tools first.

As first we need to tell, in a script (sh file) where the Xilinx tools are installed and were the
vendor library sources are stored and were we ant the compiled libraries to be written.
To do that go to the /opt/Ghdl/lib/ghdl/vendors directory.

Open with a text editor the config.sh file and modify following lines:

./configure --with-llvm-config=/usr/lib/llvm-9/bin/llvm-config --

prefix=/opt/Ghdl

GHDL simulator

export GHDL_ROOT="/opt/Ghdl"

export PATH=$PATH:$GHDL_ROOT/bin

sudo ln -s /opt/Ghdl/bin/ghdl /usr/bin/ghdl

af://n2479
af://n2804

In the file section declare -A InstallationDirectories modify the line
InstallationDirectories[XilinxVivado]="" by adding the main install path of the
Xilinx Vivado tools. On my system the line looks like:
InstallationDirectories[XilinxVivado]="/opt/Xilinx/Vivado/2020.1"

In the file section declare -A DestinationDirectories modify the line
DestinationDirectories[XilinxVivado]="xilinx-vivado" to point to the directory
were the compiled libraries must fit. In my case the line looks as:
DestinationDirectories[XilinxVivado]="/opt/Ghdl/lib/ghdl/Xilinx93"

As last modification, in the file section declare -A SourceDirectories modify the line
SourceDirectories[XilinxVivado]="data/vhdl/src" . In fact this line doesn't need
any modification because the Xilinx VHDL source libraries are stored at Xilinx tool
install in the given directory.

If you did not start a terminal for previous actions, launch a terminal window and now and
chnage directory to: cd /opt/Ghdl/lib/ghdl/vendors .

Run in the terminal the compile-xilinx-vivado.sh script with the required options.
in this case the libraries need to be compiled for VHDL-93, and all Xilinx libraries must be
generated.

The command must be run as: `./compile-xilinx-vivado.sh --vhdl93 --all

When other libraries must be compiled for Xilinx or for other vendors or VHDL library
suppliers consult the readme.md file in the vendors directory.

Remark: The above described process fails when the target directory already exist!
In other words: when DestinationDirectories[XilinxVivado] gets a path to a already existing directory
(with or without content) the library compile process mentions at the end of it's run "Compiling
Xilinx Vivado libraries [FAILED]"

UVVM

A second example of VHDL simulation library is the Universal VHDL Verification Methodology
(UVVM) library that can be downloaded here . UVVM Utility Library is tool and library
independent, but it must be compiled with VHDL 2008.

Download the library by hitting the [code] button and downloading the UVVM-master.zip file.

Copy the UVVM-master.zip into the /opt/Ghdl/lib/ghdl/vendors directory.

Uncompress the file and let it store everything in the directory available in the zip file
(UVVM-master).

Go to the */opt/Ghdl/lib/ghdl/vendors directory and open with a text editor the config.sh file
and change following:

in the file section declare -A InstallationDirectories modify the line
InstallationDirectories[UVVM]="" by adding the main install path of the Xilinx
Vivado tools. On my system the line looks like:
InstallationDirectories[UVVM]="/opt/Ghdl/bin/ghdl/UVVM-master" This is the
directory of the unzipped UVVM-master.zip file from GitHub.
In the file section declare -A DestinationDirectories modify the line
DestinationDirectories[UVVM]="xilinx-vivado" to point to the directory were the
compiled libraries must fit. In my case the line looks as:
DestinationDirectories[UVVM]="/opt/Ghdl/lib/ghdl/UVVM"

As last modification, in the file section declare -A SourceDirectories modify the line
SourceDirectories[XilinxVivado]="." . In fact this line doesn't need any

af://n2806
https://github.com/UVVM/UVVM

modification because the Xilinx VHDL source libraries are stored at Xilinx tool install in
the given directory.

If you did not start a terminal for previous actions, launch a terminal window and now and
chnage directory to: cd /opt/Ghdl/lib/ghdl/vendors .

Run in the terminal the compile-xilinx-vivado.sh script with the required options.
in this case the libraries need to be compiled for VHDL-93, and all Xilinx libraries must be
generated.

The command must be run as: `./compile-xilinx-uvvm.sh --all

Find, when the command finishes successful under the UVVM directory a set of directories
containing simulatable code.

Remark:

Some restrictions and remarks:

The same issue applies here as when compiling the Xilinx libraries. Compilation fails at
the end of the compilation when the destination directory already exists.

In the UVVM documentation, in step 2 of the "For developers who understand"
paragraph it is mentioned that a 'compile_order.txt' file must be used. Don't know why,
but I compiled the libraries without this file. In fact this file does not even exist in the
vendors directory of GHDL.

Instead of the 'compile_order.txt' file, the things to compile or compile order is given in
the compile-uvvm.sh script. The script by default contains a set of UVVM modules. In
mean time the UVVm library has been expanded with new components. Thus what we
need to do is:

Open the compile-uvvm.sh script with a text editor.
The near top of the file shows something like this:

Open the UVVM-master directory and compare the contents with the list in the
script (above text). Add the missing parts.

Add to uvvm_pkgs:

uvvm_pkgs="uvvm_util

 uvvm_vvc_framework"

uvvm_vips="

 bitvis_vip_scoreboard

 bitvis_vip_sbi

 bitvis_vip_avalon_mm

 bitvis_vip_axilite

 bitvis_vip_axistream

 bitvis_vip_gpio

 bitvis_vip_i2c

 bitvis_vip_spi

 bitvis_vip_uart

 bitvis_vip_wishbone

 bitvis_vip_clock_generator

"

xConstrRandFuncCov

Add to uvvm_vips

DO NOT ADD:

If add the compilation will fail due to an error in the files of the
bitvis_vip_hvvc_to_vvc_bridge model.

Save the file and compile the library as discussed above.

GtkWave

This is a similar install procedure as for GHDL, do following:

Open a terminal window and change directory (cd) to the /opt folder.
Create a new directory called /GtkWave (sudo mkdir GtkWave).

Change the owner and group of the directory
sudo chown <user> GtkWave

sudo chgrp <user> GtkWave

 = your user name.
This is done to make later modifications and additions easier.

Change directory to the folder used for the uncompressed files;
cd /home/Downloads/Ghdl/GtkWave<version> .

Run the terminal command: ./configure --prefix=/opt/GtkWave

The above command should do the job when the configure script can find the Tcl/TK
tools installed on the machine. The tool must be able to find following files: tclConfig.sh
and tkConfig.sh. When the configure script cannot find one of the files check if tcl and
tk are installed. When not install both and try again. When tcl and tk are installed run
the script with following options:
./configure --prefix=/opt/GtkWave --with-tcl=/opt/ActiveTcl/lib/tcl8.6 --with-
tk=/opt/ActiveTcl/lib/tk8.6 (replace the path /opt/ActiveTcl/lib/tcl8.6 (tk8.) by the
appropriate path on your system).
Another thing where the configuration script can trip over are the xz-utils (zip utilities).
To avoid problems run the command:
./configure --prefix=/opt/GtkWave --with-tcl=/opt/ActiveTcl/lib/tcl8.6 --with-
tk=/opt/ActiveTcl/lib/tk8.6 --disable-xz

When the previous run is done, type make and let it run again

Type su and provide the root or sudo password then type make install and let run again
until finished.

Check the install by running: make installcheck .

The tool should now be installed in /opt/GtkWave, showing three folders (bin, lib, share).

bitvis_irqc

bitvis_vip_spec_cov

bitvis_vip_avalon_st

bitvis_vip_error_injection

bitvis_vip_gmii

bitvis_vip_rgmii

bitvis_vip_hvvc_to_vvc_bridge

bitvis_vip_ethernet

af://n2875

Add the path /opt/GtkWave/bin to the systems path by editing the .bashrc file.

Change directory to /opt/GtkWave/bin and create a symbolic link for ghdl.

sudo ln -s /opt/GtkWave/bin/gtkwave /usr/bin/gtkwave

The end

Both tools are installed.
Under Linux/Ubuntu opening a terminal and typing:

ghdl
Shows ghdl:error: missing command, try ghdl --help
gtkwave
 Shows an empty black pop-up screen normally used for waveforms.

The tools are installed and functional.

Tools Documentation

GHDL

https://ghdl.readthedocs.io/en/latest/index.html

GtkWave

http://gtkwave.sourceforge.net/gtkwave.pdf
VCD writer: http://pyvcd.readthedocs.io/en/latest/index.html

GtkWave viewer

export GTKWAVE_ROOT="/opt/GtkWave"

export PATH=$PATH:$GTKWAVE_ROOT/bin

af://n2514
af://n2522
af://n2523
https://ghdl.readthedocs.io/en/latest/index.html
af://n2528
http://gtkwave.sourceforge.net/gtkwave.pdf
http://pyvcd.readthedocs.io/en/latest/index.html

	Install and use GHDL and GtkWave
	Table of Contents
	GHDL
	GtkWave
	Get the necessary programs and tools
	GHDL:
	GtkWave

	Install the tools
	Install GNAT
	Install LLVM
	Install GHDL
	Install GHDL vendor libraries
	Xilinx
	UVVM

	GtkWave
	The end

	Tools Documentation
	GHDL
	GtkWave

